Q. 1 - Q. 25 carry one mark each.

Q. 1 Consider a system of linear equations:

$$
\begin{aligned}
& x-2 y+3 z=-1 \\
& x-3 y+4 z=1, \text { and } \\
& -2 x+4 y-6 z=k
\end{aligned}
$$

The value of k for which the system has infinitely many solutions is \qquad .
Q. 2 A function $f(x)=1-x^{2}+x^{3}$ is defined in the closed interval $[-1,1]$. The value of x, in the open interval $(-1,1)$ for which the mean value theorem is satisfied, is
(A) $-1 / 2$
(B) $-1 / 3$
(C) $1 / 3$
(D) $1 / 2$
Q. 3 Suppose A and B are two independent events with probabilities $P(A) \neq 0$ and $P(B) \neq 0$. Let \bar{A} and \bar{B} be their complements. Which one of the following statements is FALSE?
(A) $P(A \cap B)=P(A) P(B)$
(B) $P(A \mid B)=P(A)$
(C) $P(A \cup B)=P(A)+P(B)$
(D) $P(\bar{A} \cap \bar{B})=P(\bar{A}) P(\bar{B})$
Q. 4 Let $z=x+i y$ be a complex variable. Consider that contour integration is performed along the unit circle in anticlockwise direction. Which one of the following statements is NOT TRUE?
(A) The residue of $\frac{Z}{Z^{2}-1}$ at $z=1$ is $1 / 2$
(B) $\oint_{C} z^{2} d z=0$
(C) $\frac{1}{2 \pi i} \oint_{C} \frac{1}{z} d z=1$
(D) \bar{Z} (complex conjugate of Z) is an analytical function
Q. 5 The value of p such that the vector $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is an eigenvector of the matrix $\left[\begin{array}{ccc}4 & 1 & 2 \\ p & 2 & 1 \\ 14 & -4 & 10\end{array}\right]$ is
\qquad -.
Q. 6 In the circuit shown, at resonance, the amplitude of the sinusoidal voltage (in Volts) across the capacitor is \qquad .

Q. 7 In the network shown in the figure, all resistors are identical with $R=300 \Omega$. The resistance R_{ab} (in Ω) of the network is \qquad .

$$
\mathrm{R}=300 \Omega
$$

Q. $8 \quad$ In the given circuit, the values of V_{1} and V_{2} respectively are

(A) $5 \mathrm{~V}, 25 \mathrm{~V}$
(B) $10 \mathrm{~V}, 30 \mathrm{~V}$
(C) $15 \mathrm{~V}, 35 \mathrm{~V}$
(D) $0 \mathrm{~V}, 20 \mathrm{~V}$
Q. 9 A region of negative differential resistance is observed in the current voltage characteristics of a silicon PN junction if
(A) both the P -region and the N -region are heavily doped
(B) the N -region is heavily doped compared to the P -region
(C) the P -region is heavily doped compared to the N -region
(D) an intrinsic silicon region is inserted between the P -region and the N -region
Q. 10 A silicon sample is uniformly doped with donor type impurities with a concentration of $10^{16} / \mathrm{cm}^{3}$. The electron and hole mobilities in the sample are $1200 \mathrm{~cm}^{2} / \mathrm{V}$-s and $400 \mathrm{~cm}^{2} / \mathrm{V}$-s respectively. Assume complete ionization of impurities. The charge of an electron is $1.6 \times 10^{-19} \mathrm{C}$. The resistivity of the sample (in $\Omega-\mathrm{cm}$) is \qquad .
Q. 11 For the circuit with ideal diodes shown in the figure, the shape of the output $\left(v_{\text {out }}\right)$ for the given sine wave input $\left(v_{i n}\right)$ will be

(A)

(B)

(C)

(D)

Q. 12 In the circuit shown below, the Zener diode is ideal and the Zener voltage is 6 V . The output voltage V_{o} (in volts) is \qquad .

Q. 13 In the circuit shown, the switch SW is thrown from position A to position B at time $\mathrm{t}=0$. The energy (in $\mu \mathrm{J}$) taken from the 3 V source to charge the $0.1 \mu \mathrm{~F}$ capacitor from 0 V to 3 V is

(A) 0.3
(B) 0.45
(C) 0.9
(D) 3
Q. 14 In an 8085 microprocessor, the shift registers which store the result of an addition and the overflow bit are, respectively
(A) B and F
(B) A and F
(C) H and F
(D) A and C
Q. $15 \mathrm{~A} 16 \mathrm{~Kb}(=16,384$ bit) memory array is designed as a square with an aspect ratio of one (number of rows is equal to the number of columns). The minimum number of address lines needed for the row decoder is \qquad .
Q. 16 Consider a four bit D to A converter. The analog value corresponding to digital signals of values 0000 and 0001 are 0 V and 0.0625 V respectively. The analog value (in Volts) corresponding to the digital signal 1111 is \qquad .
Q. 17 The result of the convolution $x(-t) * \delta\left(-t-t_{0}\right)$ is
(A) $x\left(t+t_{0}\right)$
(B) $x\left(t-t_{0}\right)$
(C) $x\left(-t+t_{0}\right)$
(D) $x\left(-t-t_{0}\right)$
Q. 18 The waveform of a periodic signal $x(t)$ is shown in the figure.

A signal $g(t)$ is defined by $g(t)=x\left(\frac{t-1}{2}\right)$. The average power of $g(t)$ is \qquad .
Q. 19 Negative feedback in a closed-loop control system DOES NOT
(A) reduce the overall gain
(B) reduce bandwidth
(C) improve disturbance rejection
(D) reduce sensitivity to parameter variation
Q. 20 A unity negative feedback system has the open-loop transfer function $G(s)=\frac{K}{s(s+1)(s+3)}$. The value of the gain $K(>0)$ at which the root locus crosses the imaginary axis is \qquad $-$
Q. 21 The polar plot of the transfer function $G(s)=\frac{10(s+1)}{s+10}$ for $0 \leq \omega<\infty$ will be in the
(A) first quadrant
(B) second quadrant
(C) third quadrant
(D) fourth quadrant
Q. 22 A sinusoidal signal of 2 kHz frequency is applied to a delta modulator. The sampling rate and step-size Δ of the delta modulator are 20,000 samples per second and 0.1 V , respectively. To prevent slope overload, the maximum amplitude of the sinusoidal signal (in Volts) is
(A) $\frac{1}{2 \pi}$
(B) $\frac{1}{\pi}$
(C) $\frac{2}{\pi}$
(D) π
Q. 23 Consider the signal $s(t)=m(t) \cos \left(2 \pi f_{c} t\right)+\hat{m}(t) \sin \left(2 \pi f_{c} t\right)$ where $\hat{m}(t)$ denotes the Hilbert transform of $m(t)$ and the bandwidth of $m(t)$ is very small compared to f_{c}. The signal $s(t)$ is a
(A) high-pass signal
(B) low-pass signal
(C) band-pass signal
(D) double sideband suppressed carrier signal
Q. 24 Consider a straight, infinitely long, current carrying conductor lying on the z-axis. Which one of the following plots (in linear scale) qualitatively represents the dependence of H_{ϕ} on r, where H_{ϕ} is the magnitude of the azimuthal component of magnetic field outside the conductor and r is the radial distance from the conductor?
(A)

(C)

(B)

(D)

Q. 25 The electric field component of a plane wave traveling in a lossless dielectric medium is given by $\vec{E}(z, t)=\hat{a}_{y} 2 \cos \left(10^{8} t-\frac{z}{\sqrt{2}}\right) \mathrm{V} / \mathrm{m}$. The wavelength (in m) for the wave is \qquad -

Q. 26 - Q. 55 carry two marks each.

Q. 26

The solution of the differential equation $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+y=0$ with $y(0)=y^{\prime}(0)=1$ is
(A) $(2-t) e^{t}$
(B) $(1+2 t) e^{-t}$
(C) $(2+t) e^{-t}$
(D) $(1-2 t) e^{t}$
Q. 27 A vector \vec{P} is given by $\vec{P}=x^{3} y \vec{a}_{x}-x^{2} y^{2} \vec{a}_{y}-x^{2} y z \vec{a}_{z}$. Which one of the following statements is TRUE?
(A) \vec{P} is solenoidal, but not irrotational
(B) \vec{P} is irrotational, but not solenoidal
(C) \vec{P} is neither solenoidal nor irrotational
(D) \vec{P} is both solenoidal and irrotational
Q. 28 Which one of the following graphs describes the function $\mathrm{f}(\mathrm{x})=e^{-\mathrm{x}}\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$?
(A)

(B)

(C)

(D)

Q. 29 The maximum area (in square units) of a rectangle whose vertices lie on the ellipse $x^{2}+4 y^{2}=1$ is
\qquad -
Q. 30 The damping ratio of a series $R L C$ circuit can be expressed as
(A) $\frac{R^{2} C}{2 L}$
(B) $\frac{2 L}{R^{2} C}$
(C) $\frac{R}{2} \sqrt{\frac{C}{L}}$
(D) $\frac{2}{R} \sqrt{\frac{L}{C}}$
Q. 31 In the circuit shown, switch SW is closed at $t=0$. Assuming zero initial conditions, the value of $v_{\mathrm{c}}(t)$ (in Volts) at $t=1 \mathrm{sec}$ is \qquad .

Q. 32 In the given circuit, the maximum power (in Watts) that can be transferred to the load R_{L} is
\qquad .

Q. 33 The built-in potential of an abrupt p-n junction is 0.75 V . If its junction capacitance $\left(\mathrm{C}_{\mathrm{J}}\right)$ at a reverse bias $\left(\mathrm{V}_{\mathrm{R}}\right)$ of 1.25 V is 5 pF , the value of $\mathrm{C}_{\mathrm{J}}($ in pF$)$ when $\mathrm{V}_{\mathrm{R}}=7.25 \mathrm{~V}$ is \qquad -.
Q. 34 A MOSFET in saturation has a drain current of 1 mA for $\mathrm{V}_{\mathrm{DS}}=0.5 \mathrm{~V}$. If the channel length modulation coefficient is $0.05 \mathrm{~V}^{-1}$, the output resistance (in $\mathrm{k} \Omega$) of the MOSFET is \qquad .
Q. 35 For a silicon diode with long P and N regions, the accepter and donor impurity concentrations are $1 \times 10^{17} \mathrm{~cm}^{-3}$ and $1 \times 10^{15} \mathrm{~cm}^{-3}$, respectively. The lifetimes of electrons in P region and holes in N region are both $100 \mu \mathrm{~s}$. The electron and hole diffusion coefficients are $49 \mathrm{~cm}^{2} / \mathrm{s}$ and $36 \mathrm{~cm}^{2} / \mathrm{s}$, respectively. Assume $\mathrm{kT} / \mathrm{q}=26 \mathrm{mV}$, the intrinsic carrier concentration is $1 \times 10^{10} \mathrm{~cm}^{-3}$, and $\mathrm{q}=1.6 \times 10^{-19} \mathrm{C}$. When a forward voltage of 208 mV is applied across the diode, the hole current density (in $\mathrm{nA} / \mathrm{cm}^{2}$) injected from P region to N region is \qquad -.
Q. 36 The Boolean expression $F(X, Y, Z)=\bar{X} Y \bar{Z}+X \bar{Y} \bar{Z}+X Y \bar{Z}+X Y Z$ converted into the canonical product of sum (POS) form is
(A) $(\mathrm{X}+\mathrm{Y}+\mathrm{Z})(\mathrm{X}+\mathrm{Y}+\overline{\mathrm{Z}})(\mathrm{X}+\overline{\mathrm{Y}}+\overline{\mathrm{Z}})(\overline{\mathrm{X}}+\mathrm{Y}+\overline{\mathrm{Z}})$
(B) $(\mathrm{X}+\overline{\mathrm{Y}}+\mathrm{Z})(\overline{\mathrm{X}}+\mathrm{Y}+\overline{\mathrm{Z}})(\overline{\mathrm{X}}+\overline{\mathrm{Y}}+\mathrm{Z})(\overline{\mathrm{X}}+\overline{\mathrm{Y}}+\overline{\mathrm{Z}})$
(C) $(\mathrm{X}+\mathrm{Y}+\mathrm{Z})(\overline{\mathrm{X}}+\mathrm{Y}+\overline{\mathrm{Z}})(\mathrm{X}+\overline{\mathrm{Y}}+\mathrm{Z})(\overline{\mathrm{X}}+\overline{\mathrm{Y}}+\overline{\mathrm{Z}})$
(D) $(\mathrm{X}+\overline{\mathrm{Y}}+\overline{\mathrm{Z}})(\overline{\mathrm{X}}+\mathrm{Y}+\mathrm{Z})(\overline{\mathrm{X}}+\overline{\mathrm{Y}}+\mathrm{Z})(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$
Q. 37 All the logic gates shown in the figure have a propagation delay of 20 ns. Let $\mathrm{A}=\mathrm{C}=0$ and $\mathrm{B}=1$ until time $t=0$. At $t=0$, all the inputs flip (i.e., $A=C=1$ and $B=0$) and remain in that state. For $t>0$, output $Z=1$ for a duration (in ns) of \qquad .

Q. 38 A 3-input majority gate is defined by the logic function $M(a, b, c)=a b+b c+c a$. Which one of the following gates is represented by the function $M(\overline{M(a, b, c)}, M(a, b, \bar{c}), c)$?
(A) 3-input NAND gate
(B) 3 -input XOR gate
(C) 3-input NOR gate
(D) 3-input XNOR gate
Q. 39 For the NMOSFET in the circuit shown, the threshold voltage is $V_{t h}$, where $V_{t h}>0$. The source voltage $V_{S S}$ is varied from 0 to $V_{D D}$. Neglecting the channel length modulation, the drain current I_{D} as a function of $V_{S S}$ is represented by

(A)

(B)

(C)

(D)

Q. 40 In the circuit shown, assume that the opamp is ideal. The bridge output voltage V_{0} (in mV) for $\delta=0.05$ is \qquad .

Q. 41 The circuit shown in the figure has an ideal opamp. The oscillation frequency and the condition to sustain the oscillations, respectively, are

(A) $\frac{1}{C R}$ and $R_{1}=R_{2}$
(B) $\frac{1}{C R}$ and $R_{1}=4 R_{2}$
(C) $\frac{1}{2 C R}$ and $R_{1}=R_{2}$
(D) $\frac{1}{2 C R}$ and $R_{1}=4 R_{2}$
Q. 42 In the circuit shown, $\mathrm{I}_{1}=80 \mathrm{~mA}$ and $\mathrm{I}_{2}=4 \mathrm{~mA}$. Transistors T_{1} and T_{2} are identical. Assume that the thermal voltage V_{T} is 26 mV at $27^{\circ} \mathrm{C}$. At $50^{\circ} \mathrm{C}$, the value of the voltage $\mathrm{V}_{12}=\mathrm{V}_{1}-\mathrm{V}_{2}(\mathrm{in} \mathrm{mV})$ is
\qquad .

Q. 43 Two sequences $[a, b, c]$ and $[A, B, C]$ are related as,

$$
\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & W_{3}^{-1} & W_{3}^{-2} \\
1 & W_{3}^{-2} & W_{3}^{-4}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { where } W_{3}=e^{j \frac{2 \pi}{3}}
$$

If another sequence $[p, q, r]$ is derived as,

$$
\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & W_{3}^{1} & W_{3}^{2} \\
1 & W_{3}^{2} & W_{3}^{4}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & W_{3}^{2} & 0 \\
0 & 0 & W_{3}^{4}
\end{array}\right]\left[\begin{array}{l}
A / 3 \\
B / 3 \\
C / 3
\end{array}\right],
$$

then the relationship between the sequences $[p, q, r]$ and $[a, b, c]$ is
(A) $[p, q, r]=[b, a, c]$
(B) $[p, q, r]=[b, c, a]$
(C) $[p, q, r]=[c, a, b]$
(D) $[p, q, r]=[c, b, a]$
Q. 44 For the discrete-time system shown in the figure, the poles of the system transfer function are located at

(A) 2, 3
(B) $\frac{1}{2}, 3$
(C) $\frac{1}{2}, \frac{1}{3}$
(D) $2, \frac{1}{3}$
Q. 45 The pole-zero diagram of a causal and stable discrete-time system is shown in the figure. The zero at the origin has multiplicity 4 . The impulse response of the system is $h[n]$. If $h[0]=1$, we can conclude

(A) $h[n]$ is real for all n
(B) $h[n]$ is purely imaginary for all n
(C) $h[n]$ is real for only even n
(D) $h[n]$ is purely imaginary for only odd n
Q. 46 The open-loop transfer function of a plant in a unity feedback configuration is given as $G(s)=\frac{K(s+4)}{(s+8)\left(s^{2}-9\right)}$. The value of the gain $K(>0)$ for which $-1+j 2$ lies on the root locus is
\qquad .
Q. 47 A lead compensator network includes a parallel combination of R and C in the feed-forward path. If the transfer function of the compensator is $G_{c}(s)=\frac{s+2}{s+4}$, the value of $R C$ is \qquad .
Q. 48 A plant transfer function is given as $G(s)=\left(K_{P}+\frac{K_{I}}{s}\right) \frac{1}{s(s+2)}$. When the plant operates in a unity feedback configuration, the condition for the stability of the closed loop system is
(A) $K_{P}>\frac{K_{I}}{2}>0$
(B) $2 K_{I}>K_{P}>0$
(C) $2 K_{I}<K_{P}$
(D) $2 K_{I}>K_{P}$
Q. 49 The input X to the Binary Symmetric Channel (BSC) shown in the figure is ' 1 ' with probability 0.8 . The cross-over probability is $1 / 7$. If the received bit $Y=0$, the conditional probability that ' 1 ' was transmitted is \qquad .

Q. 50 The transmitted signal in a GSM system is of 200 kHz bandwidth and 8 users share a common bandwidth using TDMA. If at a given time 12 users are talking in a cell, the total bandwidth of the signal received by the base station of the cell will be at least (in kHz) \qquad .
Q. 51 In the system shown in Figure (a), $m(t)$ is a low-pass signal with bandwidth $W \mathrm{~Hz}$. The frequency response of the band-pass filter $H(f)$ is shown in Figure (b). If it is desired that the output signal $z(t)=10 x(t)$, the maximum value of W (in Hz) should be strictly less than \qquad -.

(a)

(b)
Q. 52 A source emits bit 0 with probability $\frac{1}{3}$ and bit 1 with probability $\frac{2}{3}$. The emitted bits are communicated to the receiver. The receiver decides for either 0 or 1 based on the received value R. It is given that the conditional density functions of R are as

$$
f_{R \mid 0}(r)=\left\{\begin{array}{lc}
\frac{1}{4}, & -3 \leq x \leq 1, \\
0, & \text { otherwise }
\end{array} \quad \text { and } \quad f_{R \mid 1}(r)= \begin{cases}\frac{1}{6}, & -1 \leq x \leq 5 \\
0, & \text { otherwise }\end{cases}\right.
$$

The minimum decision error probability is
(A) 0
(B) $1 / 12$
(C) $1 / 9$
(D) $1 / 6$
Q. 53 The longitudinal component of the magnetic field inside an air-filled rectangular waveguide made of a perfect electric conductor is given by the following expression

$$
H_{z}(x, y, z, t)=0.1 \cos (25 \pi x) \cos (30.3 \pi y) \cos \left(12 \pi \times 10^{9} t-\beta z\right)(A / m)
$$

The cross-sectional dimensions of the waveguide are given as $a=0.08 \mathrm{~m}$ and $b=0.033 \mathrm{~m}$. The mode of propagation inside the waveguide is
(A) $T M_{12}$
(B) $T M_{21}$
(C) $T E_{21}$
(D) $T E_{12}$
Q. 54 The electric field intensity of a plane wave traveling in free space is given by the following expression

$$
\mathbf{E}(x, t)=\mathbf{a}_{y} 24 \pi \cos \left(\omega t-k_{0} x\right)(\mathrm{V} / \mathrm{m})
$$

In this field, consider a square area $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ on a plane $x+y=1$. The total time-averaged power (in mW) passing through the square area is \qquad .
Q.55 Consider a uniform plane wave with amplitude $\left(\mathrm{E}_{0}\right)$ of $10 \mathrm{~V} / \mathrm{m}$ and 1.1 GHz frequency travelling in air, and incident normally on a dielectric medium with complex relative permittivity $\left(\varepsilon_{\mathrm{r}}\right)$ and permeability $\left(\mu_{r}\right)$ as shown in the figure.

The magnitude of the transmitted electric field component (in V/m) after it has travelled a distance of 10 cm inside the dielectric region is \qquad .

END OF THE QUESTION PAPER

