Electronis Discussion
0 votes
81 views

A second-order LTI system is described by the following state equations, $$ \begin{array}{ll} \frac{d}{dt}x_1(t)-x_2(t)=0 \\ \frac{d}{dt}x_2(t)+2x_1(t)+3x_2(t)=r(t) \end{array}$$

where $x_1(t)$ and $x_2(t)$ are the two state variables and $r(t)$ denotes the input. The output $c(t)=x_1(t)$. The system is

  1. undamped (oscillatory)
  2. underdamped
  3. critically damped
  4. overdamped
in Control Systems by (2.8k points)
recategorized by | 81 views

Please log in or register to answer this question.

Answer:
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,174 questions
78 answers
11 comments
43,917 users