Electronis Discussion
0 votes

Let the state-space representation of an LTI system be $x(t)=A x(t)+B u(t), y(t)=Cx(t)+du(t)$ where $A,B,C$ are matrices, $d$ is a scalar, $u(t)$ is the input to the system, and $y(t)$ is its output. Let $B=[0\quad0\quad1]^{T}$ and $d=0$ .Which one of the following options for $A$ and $C$ will ensure that the transfer function of this LTI system is


  1. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-1&-2&-3 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 1&0&0 \end{bmatrix}$
  2. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-3&-2&-1 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 1&0&0 \end{bmatrix}$
  3. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-1&-2&-3 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 0&0&1 \end{bmatrix}$
  4. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-3&-2&-1 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 0&0&1 \end{bmatrix}$
in Continuous-time Signals by (1.4k points)
recategorized by

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,109 questions
62 answers
43,621 users