Electronis Discussion
0 votes

Let the state-space representation of an LTI system be $x(t)=A x(t)+B u(t), y(t)=Cx(t)+du(t)$ where $A,B,C$ are matrices, $d$ is a scalar, $u(t)$ is the input to the system, and $y(t)$ is its output. Let $B=[0\quad0\quad1]^{T}$ and $d=0$ .Which one of the following options for $A$ and $C$ will ensure that the transfer function of this LTI system is


  1. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-1&-2&-3 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 1&0&0 \end{bmatrix}$
  2. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-3&-2&-1 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 1&0&0 \end{bmatrix}$
  3. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-1&-2&-3 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 0&0&1 \end{bmatrix}$
  4. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-3&-2&-1 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 0&0&1 \end{bmatrix}$
in Others by (1.4k points)
edited by

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,044 questions
44 answers
42,824 users