+2 votes
47 views

The current population of a city is $11,02,500$ . If it has been increasing at the rate of $5\%$ per annum, what was its population $2$ years ago?

1. $9,92,500$
2. $9,95,006$
3. $10,00,000$
4. $12,51,506$

recategorized ago | 47 views

## 1 Answer

+1 vote
Best answer
Given that, the current population of a city is $11,02,500,$ rate $= 5\%,$ and time $= 2$ years.

We know that, $A = P\left(1+\dfrac{r}{100}\right)^{t}$

Here, $A = 11,02,500,r = 5\%,t = 2$ years.

Now, $1102500 = P\left(1 + \dfrac{5}{100}\right)^{2}$

$\implies 1102500 = P\left(\dfrac{105}{100}\right)^{2}$

$\implies 1102500 = P\left(\dfrac{21}{20}\right)^{2}$

$\implies 1102500 = P\left(\dfrac{441}{400}\right)$

$\implies P = \dfrac{1102500 \times 400}{441} = 10,00,000$

$\textbf{Short Method:}$ Let’s assume, the two years ago the population was $x.$

Now$,x \times \dfrac{105}{100} \times \dfrac{105}{100} = 1102500$

$\implies x = 10,00,000$

So, the correct answer is $(C).$
by (3.8k points)
selected by
Answer: