4 views

0 votes

The electric and magnetic fields for a $\text{TEM}$ wave of frequency $14 \; \mathrm{GHz}$ in a homogeneous medium of relative permittivity $\varepsilon_r$ and relative permeability $\mu_r=1$ are given by

$$ \vec{E}=E_p e^{j(\omega t-280 \pi y)} \hat{u}_z V / m \qquad \quad \vec{H}=3 e^{j(\omega t-280 \pi y)} \hat{u}_x A / m $$

Assuming the speed of light in free space to be $3 \times 10^8 \mathrm{~m/s}$, the intrinsic impedance of free space to be $120 \pi$, the relative permittivity $\varepsilon_r$ of the medium and the electric field amplitude $E_p$ are

- $\varepsilon_r=3, E_p=120 \pi$
- $\varepsilon_r=3, E_p=360 \pi$
- $\varepsilon_r=9, E_p=360 \pi$
- $\varepsilon_r=9, E_p=120 \pi$