in Others edited by
3 views
0 votes
0 votes

GATE ECE 2010 | Question-20

Suppose that the modulating signal is $m(t)=2 \cos \left(2 \pi f_{m} t\right)$ and the carrier signal is $x_{c}(t)=A_{C} \cos \left(2 \pi f_{c}t\right)$. Which one of the following is a conventional $\text{AM}$ signal without over-modulation?

  1. $x(t)=A_{c} m(t) \cos \left(2 \pi f_{c} t\right)$
  2. $x(t)=A_{c}[1+m(t)] \cos \left(2 \pi f_{c} t\right)$
  3. $x(t)=A_{c} \cos \left(2 \pi f_{c} t\right)+\frac{A_{C}}{4} m(t) \cos \left(2 \pi f_{c} t\right)$
  4. $x(t)=A_{c} \cos \left(2 \pi f_{m} t\right) \cos \left(2 \pi f_{c} t\right)+A_{c} \sin \left(2 \pi f_{m} t\right) \sin \left(2 \pi f_{c} t\right)$
in Others edited by
by
32.7k points
3 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.