in Others edited by
4 views
0 votes
0 votes

GATE ECE 1993 | Question-5

Fourier series of the periodic function (period $2 \pi$ ) defined by

$f(x)=\left\{\begin{array}{ll}0 & -\pi x x<0 \\ x & 0<x<\pi\end{array}\right.$ is $\frac{\pi}{4}+\sum_1^{\infty}\left[\frac{1}{\pi} n^2\left(\cos n \pi-1 \cos n x-\frac{1}{n} \cos n \pi \sin n x\right]\right.$

By putting $x=\pi$ in the above, one can deduce that the sum of the series

$1+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots$, is

  1. $\frac{\pi^2}{4}$
  2. $\frac{\pi^2}{6}$
  3. $\frac{\pi^2}{8}$
  4. $\frac{\pi^2}{12}$
in Others edited by
by
32.7k points
4 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.