3 views

0 votes

The state space representation of a separately excited DC servo motor dynamics is given as

\[\left[\begin{array}{l}

\frac{d \omega}{d t} \\

\frac{d i_{a}}{d t}

\end{array}\right]=\left[\begin{array}{rr}

-1 & 1 \\

-1 & -10

\end{array}\right]\left[\begin{array}{l}

\omega \\

i_{a}

\end{array}\right]+\left[\begin{array}{r}

0 \\

10

\end{array}\right] u\]

where $\omega$ is the speed of the motor, $i_{a}$ is the armature current and $u$ is the armature voltage. The transfer function $\frac{\omega(s)}{U(s)}$ of the motor is

- $\frac{10}{s^{2}+11 s+11}$
- $\frac{1}{s^{2}+11 s+11}$
- $\frac{10 s+10}{s^{2}+11 s+11}$
- $\frac{1}{s^{2}+s+1}$