in Others ago edited ago by
3 views
0 votes
0 votes

GATE ECE 2007 | Question-24


The solution of the differential equation $k^{2} \frac{d^{2} y}{d x^{2}}=y-y_{2}$ under the boundary conditions (i) $y=y_{1}$ at $x=0$ and (ii) $y=y_{2}$ at $x=\infty$, where $k, y_{1}$ and $y_{2}$ are constants, is

  1. $y=\left(y_{1}-y_{2}\right) \exp \left(-x / k^{2}\right)+y_{2}$
  2. $y=\left(y_{2}-y_{1}\right) \exp (-x / k)+y_{1}$
  3. $y=\left(y_{1}-y_{2}\right) \sinh (x / k)+y_{1}$
  4. $y=\left(y_{1}-y_{2}\right) \exp (-x / k)+y_{2}$
in Others ago edited ago by
by
21.7k points
3 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.