3 views

0 votes

A plane wave of wavelength $\lambda$ is travelling in a direction making an angle $30^{\circ}$ with positive $x$-axis and $90^{\circ}$ with positive $y$-axis. The $\vec{E}$ field of the plane wave can be represented as ( $E_{0}$ is a constant)

- $\vec{E}=\hat{y} E_{0} e^{j\left(\omega t-\frac{\sqrt{3} \pi}{\lambda} x-\frac{\pi}{\lambda} z\right)}$
- $\vec{E}=\hat{y} E_{0} e^{j\left(\omega t-\frac{\pi}{\lambda} x-\frac{\sqrt{3} \pi}{\lambda} z\right)}$
- $\vec{E}=\hat{y} E_{0} e^{j\left(\omega t+\frac{\sqrt{3} \pi}{\lambda} x+\frac{\pi}{\lambda} z\right)}$
- $\vec{E}=\hat{y} E_{0} e^{j\left(\omega t-\frac{\pi}{\lambda} x+\frac{\sqrt{3} \pi}{\lambda} z\right)}$