Electronis Discussion
0 votes

A BPSK scheme operating over an AWGN channel with noise power spectral density of $\frac{N_o}{2}$, uses equiprobable signals $s_1(t)=\sqrt{\frac{2E}{T}}\sin(\omega_ct)$ and $s_2(t)=-\sqrt{\frac{2E}{T}}\sin(\omega_ct)$ over the symbol interval $(0,T)$. If the local oscillator in a coherent receiver is ahead in phase by $45^\circ$ with respect to the received signal, the probability of error in the system is

  1. $Q(\sqrt{\frac{2E}{N_o}})$
  2. $Q(\sqrt{\frac{E}{N_o}})$
  3. $Q(\sqrt{\frac{E}{2N_o}})$
  4. $Q(\sqrt{\frac{E}{4N_o}})$
in Others by (15.7k points)
retagged by

Please log in or register to answer this question.

Answer:
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,109 questions
52 answers
8 comments
43,029 users