For a signal $x(f)$ the fourier transform is $X(f)$. Then the inverse Fourier transform of $X(3 f+2)$ is given by

- $\frac{1}{2 x}\left(\frac{t}{2}\right) e^{j 3 \pi t}$
- $\frac{1}{3 x}\left(\frac{t}{3}\right) e^{-14 \pi t / 3}$
- $3 x(3 t) e^{-j 4 \pi t}$
- $x(3 t+2)$