in Vector Analysis recategorized by
39 views
0 votes
0 votes

The $\text{DFT}$ of a vector $\begin{bmatrix} a & b  & c  & d \end{bmatrix}$ is the vector $\begin{bmatrix} \alpha & \beta & \gamma  & \delta \end{bmatrix}.$ consider the product $\begin{bmatrix} p & q  & r  & s \end{bmatrix}=\begin{bmatrix} a & b  & c  & d \end{bmatrix}\begin{bmatrix} a& b&c &d \\ d&a &b &c \\c & d& a&b \\ b& c&d &a \end{bmatrix}.$

The $\text{DFT}$ of a vector $\begin{bmatrix} p & q  & r  & s \end{bmatrix}$ is a scaled version of 

  1. $\begin{bmatrix} \alpha^{2} & \beta^{2}  & \gamma^{2}  & \delta^{2} \end{bmatrix}$
  2. $\begin{bmatrix} \sqrt{\alpha} & \sqrt{\beta}  & \sqrt{\gamma}  & \sqrt{\delta} \end{bmatrix}$
  3. $\begin{bmatrix} \alpha + \beta & \beta + \delta  & \delta + \gamma  & \gamma + \alpha \end{bmatrix}$
  4. $\begin{bmatrix} \alpha & \beta  & \gamma  & \delta \end{bmatrix}$ 
in Vector Analysis recategorized by
15.8k points
39 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.