For a function $g(t),$ it is given that $\int_{- \infty}^{ + \infty} g(t)e^{-j\omega t}\:dt = \omega e^{-2\omega^{2}}$ for any real value $\omega.$ If $y(t) = \int_{- \infty}^{t}\:g(\tau)\:d\tau,$ then $\int_{- \infty}^{ + \infty}y(t)dt$ is

- $0$
- $-j$
- $-\frac{j}{2}$
- $\frac{j}{2}$