Electronis Discussion
0 votes

An unforced linear time invariant (LTI) system is represented by $$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0& -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$ If the initial conditions are $x_1(0)= 1$ and $x_2(0)= -1$, the solution of the state equation is

  1. $x_{1}(t)= -1, \:  x_{2}(t)= 2$
  2. $x_{1}(t)= -e^{-t}, \: x_{2}(t)= 2e^{-t}$
  3. $x_{1}(t)= e^{-t}, \: x_{2}(t)= -e^{-2t}$
  4. $x_{1}(t)= -e^{-t}, \: x_{2}(t)= -2e^{-t}$
in Others by (15.7k points)
retagged ago by

Please log in or register to answer this question.

Answer:
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,109 questions
44 answers
8 comments
42,938 users