Electronis Discussion
0 votes

The capacity of a band-limited additive white Gaussian noise (AWGN) channel is given by $C = W \log_{2}\left ( 1+\frac{p} {\sigma ^{2}w} \right )$ bits per second (bps), where $W$ is the channel bandwidth, $P$ is the average power received and $\sigma ^{2}$ is the one-sided power spectral density of the AWGN. For a fixed $\frac{p}{\sigma ^{2}}=1000$, the channel capacity (in kbps) with infinite bandwidth $(W\rightarrow \infty )$ is approximately

  1. $1.44$
  2. $1.08$
  3. $0.72$
  4. $0.36$
in Vector Analysis by (15.8k points)
recategorized by

Please log in or register to answer this question.

Answer:
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,109 questions
59 answers
8 comments
43,480 users