recategorized by
97 views
0 votes
0 votes

A silicon bar is doped with donor impurities $N_{D}= 2.25 \times 10^{15} \text{atoms} / cm^{3}$. Given the intrinsic carrier concentration of silicon at $T = 300 \: K$ is $n_{i}= 1.5 \times 10^{10} cm^{-3}.$ Assuming complete impurity ionization, the equilibrium electron and hole concentrations are

  1. $n_{0}=1.5\times 10^{16}cm^{-3}, \: p_{0}= 1.5\times 10^{5}cm^{-3}$
  2. $n_{0}=1.5\times 10^{10}cm^{-3}, \: p_{0}= 1.5\times 10^{15}cm^{-3}$
  3. $n_{0}=2.25\times 10^{15}cm^{-3}, \: p_{0}= 1.5\times 10^{10}cm^{-3}$
  4. $n_{0}=2.25\times 10^{15}cm^{-3}, \: p_{0}= 1\times 10^{5}cm^{-3}$
recategorized by

Please log in or register to answer this question.

Answer: