in Linear Algebra retagged by
58 views
0 votes
0 votes

The state equation of a second-order linear system is given by

$$\dot{x}(t)=Ax(t), \:\:\:\:\:\:\:\:x(0)=x_{0}$$

For $x_{0}= \begin{bmatrix} 1\\ -1 \end{bmatrix},$     $x(t)= \begin{bmatrix} e^{-t}\\ -e^{-t} \end{bmatrix},$ and for $x_{0}= \begin{bmatrix} 0\\ 1 \end{bmatrix},$ $x(t) \begin{bmatrix} e^{-t}-e^{-2t}\\ -e^{-t}+2e^{-2t} \end{bmatrix}$. When $x_{0} = \begin{bmatrix} 3\\ 5 \end{bmatrix}$,  $x(t)$ is  

  1. $\begin{bmatrix} -8e^{-t}+11e^{-2t}\\ 8e^{-t}-22e^{-2t} \end{bmatrix} \\$
  2. $\begin{bmatrix} 11e^{-t}-8e^{-2t}\\ -11e^{-t}+16e^{-2t} \end{bmatrix} \\$
  3. $\begin{bmatrix} 3e^{-t}-5e^{-2t}\\ -3e^{-t}+10e^{-2t} \end{bmatrix} \\$
  4. $\begin{bmatrix} 5e^{-t}-3e^{-2t}\\ -5e^{-t}+6e^{-2t} \end{bmatrix}$
in Linear Algebra retagged by
15.8k points
58 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.