in Linear Algebra retagged by
35 views
0 votes
0 votes

Two sequences $\begin{bmatrix}a, & b,  & c \end{bmatrix}$ and $\begin{bmatrix}A, & B,  & C \end{bmatrix}$ are related as,

$$\begin{bmatrix}A \\ B \\ C \end{bmatrix}  = \begin{bmatrix}1  & 1  & 1 \\ 1 & W_3^{-1} & W_3^{-2} \\ 1 & W_3^{-2} & W_3^{-4}\end{bmatrix} \begin{bmatrix}a \\ b \\ c \end{bmatrix} \text{ where } W_3=e^{j \frac{2 \pi}{3}}$$

If another sequence $\begin{bmatrix}p, & q,  & r \end{bmatrix}$ is derived as,

$$\begin{bmatrix}p \\ q \\ r \end{bmatrix}  = \begin{bmatrix}1  & 1  & 1 \\ 1 & W_3^{1} & W_3^{2} \\ 1 & W_3^{2} & W_3^{4}\end{bmatrix} \begin{bmatrix}1  & 0  & 0 \\ 0 & W_3^{2} & 0 \\ 0 & 0 & W_3^{4}\end{bmatrix} \begin{bmatrix}A/3 \\ B/3 \\ C/3 \end{bmatrix} ,$$

then the relationship between the sequences $\begin{bmatrix}p, & q,  & r \end{bmatrix}$ and $\begin{bmatrix}a, & b,  & c \end{bmatrix}$ is

  1. $\begin{bmatrix}p, & q,  & r \end{bmatrix} = \begin{bmatrix} b, & a,  & c \end{bmatrix}$
  2. $\begin{bmatrix}p, & q,  & r \end{bmatrix} = \begin{bmatrix} b, & c,  & a \end{bmatrix}$
  3. $\begin{bmatrix}p, & q,  & r \end{bmatrix} = \begin{bmatrix} c, & a,  & b \end{bmatrix}$
  4. $\begin{bmatrix}p, & q,  & r \end{bmatrix} = \begin{bmatrix} c, & b,  & a \end{bmatrix}$
in Linear Algebra retagged by
by
15.8k points
35 views

Please log in or register to answer this question.

Answer:
Ask
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.