in Linear Algebra retagged by
41 views
0 votes
0 votes

Two sequences $\begin{bmatrix}a, & b,  & c \end{bmatrix}$ and $\begin{bmatrix}A, & B,  & C \end{bmatrix}$ are related as,

$$\begin{bmatrix}A \\ B \\ C \end{bmatrix}  = \begin{bmatrix}1  & 1  & 1 \\ 1 & W_3^{-1} & W_3^{-2} \\ 1 & W_3^{-2} & W_3^{-4}\end{bmatrix} \begin{bmatrix}a \\ b \\ c \end{bmatrix} \text{ where } W_3=e^{j \frac{2 \pi}{3}}$$

If another sequence $\begin{bmatrix}p, & q,  & r \end{bmatrix}$ is derived as,

$$\begin{bmatrix}p \\ q \\ r \end{bmatrix}  = \begin{bmatrix}1  & 1  & 1 \\ 1 & W_3^{1} & W_3^{2} \\ 1 & W_3^{2} & W_3^{4}\end{bmatrix} \begin{bmatrix}1  & 0  & 0 \\ 0 & W_3^{2} & 0 \\ 0 & 0 & W_3^{4}\end{bmatrix} \begin{bmatrix}A/3 \\ B/3 \\ C/3 \end{bmatrix} ,$$

then the relationship between the sequences $\begin{bmatrix}p, & q,  & r \end{bmatrix}$ and $\begin{bmatrix}a, & b,  & c \end{bmatrix}$ is

  1. $\begin{bmatrix}p, & q,  & r \end{bmatrix} = \begin{bmatrix} b, & a,  & c \end{bmatrix}$
  2. $\begin{bmatrix}p, & q,  & r \end{bmatrix} = \begin{bmatrix} b, & c,  & a \end{bmatrix}$
  3. $\begin{bmatrix}p, & q,  & r \end{bmatrix} = \begin{bmatrix} c, & a,  & b \end{bmatrix}$
  4. $\begin{bmatrix}p, & q,  & r \end{bmatrix} = \begin{bmatrix} c, & b,  & a \end{bmatrix}$
in Linear Algebra retagged by
15.8k points
41 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.