52 views

0 votes

The general solution of the differential equation

$\frac{d^2y}{dx^2}+2\frac{dy}{dx}-5y=0$

in terms of arbitrary constants $K_1$ and $K_2$ is

- $K_1e^{(-1+\sqrt{6})x}+K_2e^{(-1-\sqrt{6})x}$
- $K_1e^{(-1+\sqrt{8})x}+K_2e^{(-1-\sqrt{8})x}$
- $K_1e^{(-2+\sqrt{6})x}+K_2e^{(-2-\sqrt{6})x}$
- $K_1e^{(-2+\sqrt{8})x}+K_2e^{(-2-\sqrt{8})x}$