Electronis Discussion
0 like 0 dislike
13 views
Consider the signal $$x[n] = 6 \delta[n + 2] + 3 \delta[n + 1] + 8 \delta[n] + 7 \delta[n - 1] + 4 \delta[n - 2]$$ If $X(e^{jw})$ is the discrete-time Fourier transform of $x[n]$, then $\frac{1}{\pi} \int\limits_{-\pi}^{\pi} X(e^{jw}) \sin^2(2\omega) d\omega$ is equal to _______
in Continuous-time Signals by (15.8k points)
recategorized by | 13 views

Please log in or register to answer this question.

Answer:
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,174 questions
78 answers
11 comments
43,898 users