Electronis Discussion
0 votes
28 views

The propagation constant of a lossy transmission line is $(2+j5) m^{-1}$ and its characteristic impedance is $(50+j0) \Omega$ at $\omega = 10^6 rad \: s^{-1}$. The values of the line constants L,C,R,G are,respectively,

  1. $L = 200 \: \mu H/m, \:C = 0.1 \: \mu F/m, \: R=50 \: \Omega /m, \:G=0.02 \: S/m$
  2. $L = 250 \: \mu H/m, \: C = 0.1 \mu F/m, \: R=100 \: \Omega/m, \: G=0.04 \: S/m$
  3. $L = 200 \: \mu H/m, \: C = 0.2 \: \mu F/m, \: R=100 \: \Omega/m, \: G=0.02 \: S/m$
  4. $L = 250 \: \mu H/m, C = 0.2 \: \mu F/m, R=50 \: \Omega /m, \: G=0.04 \: S/m$
in Electromagnetics by (15.8k points)
recategorized by | 28 views

Please log in or register to answer this question.

Answer:
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,174 questions
78 answers
11 comments
43,907 users