77 views

0 votes

The propagation constant of a lossy transmission line is $(2+j5) m^{-1}$ and its characteristic impedance is $(50+j0) \Omega$ at $\omega = 10^6 rad \: s^{-1}$. The values of the line constants L,C,R,G are,respectively,

- $L = 200 \: \mu H/m, \:C = 0.1 \: \mu F/m, \: R=50 \: \Omega /m, \:G=0.02 \: S/m$
- $L = 250 \: \mu H/m, \: C = 0.1 \mu F/m, \: R=100 \: \Omega/m, \: G=0.04 \: S/m$
- $L = 200 \: \mu H/m, \: C = 0.2 \: \mu F/m, \: R=100 \: \Omega/m, \: G=0.02 \: S/m$
- $L = 250 \: \mu H/m, C = 0.2 \: \mu F/m, R=50 \: \Omega /m, \: G=0.04 \: S/m$