Hot questions in Engineering Mathematics

2 votes
1 answer
1
0 votes
0 answers
3
$\begin{array}{rlr}a^*=\max_{x, y} & x^2+y^2-8 x+7 \\ \text { s.t. } & \qquad x^2+y^2 \leq 1 \\ & \qquad \qquad y \geq 0\end{array}$Then $a^{\star}$ is$16$$14$$12$$10$Non...
0 votes
0 answers
6
Let $X$ be a random variable which takes values $1$ and $-1$ with probability $1 / 2$ each. Suppose $Y=X+N$, where $N$ is a random variable independent of $X$ with the fo...
1 votes
0 answers
14
1 votes
0 answers
18
1 votes
0 answers
25
1 votes
0 answers
30
The matrix\[A=\left(\begin{array}{ccc}1 & a_{1} & a_{1}^{2} \\1 & a_{2} & a_{2}^{2} \\1 & a_{3} & a_{3}^{2}\end{array}\right)\]is invertible when$a_{1}>a_{2}>a_{3}$$a_{1}...
1 votes
0 answers
31
Evaluate the limit\[\lim _{n \rightarrow \infty}\left(2 n^{4}\right)^{\frac{1}{3 n}} .\]$e$$1$$2^{\frac{1}{3}}$$0$None of the above
1 votes
0 answers
32
What is\[\lim _{n \rightarrow \infty} \cos \frac{\pi}{2^{2}} \cos \frac{\pi}{2^{3}} \cdots \cos \frac{\pi}{2^{n}} ?\]$0$$\pi / 2$$1 / \sqrt{2}$$2 / \pi$None of the above....
1 votes
0 answers
33
1 votes
0 answers
34
A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if for $x, y \in \mathbb{R}, \alpha \in[0,1], f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$.Which...