GO Electronics
Login
Register
@
Dark Mode
Profile
Edit my Profile
Messages
My favorites
Register
Activity
Questions
Unanswered
Tags
Subjects
Users
Ask
New Blog
Blogs
Exams
Dark Mode
Recent questions tagged tifr2014
1
vote
0
answers
1
TIFR ECE 2014 | Question: 1
Consider two independent and identically distributed random variables $X$ and $Y$ uniformly distributed in $[0,1]$. For $\alpha \in[0,1]$, the probability that $\alpha \max (X, Y)<\min (X, Y)$ is $1 /(2 \alpha)$. $\exp (1-\alpha)$ $1-\alpha$ $(1-\alpha)^{2}$ $1-\alpha^{2}$
admin
asked
in
Probability and Statistics
Dec 14, 2022
by
admin
41.3k
points
10
views
tifr2014
probability-and-statistics
probability
uniform-distribution
1
vote
0
answers
2
TIFR ECE 2014 | Question: 2
Evaluate the limit \[ \lim _{n \rightarrow \infty}\left(2 n^{4}\right)^{\frac{1}{3 n}} . \] $e$ $1$ $2^{\frac{1}{3}}$ $0$ None of the above
admin
asked
in
Calculus
Dec 14, 2022
by
admin
41.3k
points
11
views
tifr2014
calculus
limits
1
vote
0
answers
3
TIFR ECE 2014 | Question: 3
For a non-negative continuous random variable $X$, which of the following is TRUE? $E\{X\}=\int_{0}^{\infty} P(X>x) d x$. $E\{X\}=\int_{0}^{\infty} P(X \leq x) d x$. $P(X<x) \leq \frac{E\{X\}}{x}$. $(a)$ and $(c)$. None of the above.
admin
asked
in
Probability and Statistics
Dec 14, 2022
by
admin
41.3k
points
11
views
tifr2014
probability-and-statistics
probability
random-variable
1
vote
0
answers
4
TIFR ECE 2014 | Question: 4
A system accepts a sequence of real numbers $x[n]$ as input and outputs \[ y[n]=\left\{\begin{array}{ll} 0.5 x[n]-0.25 x[n-1], & n \text { even } \\ 0.75 x[n], & n \text { odd } \end{array}\right. \] The system is non-linear. non-causal. time-invariant. All of the above. None of the above.
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
9
views
tifr2014
1
vote
0
answers
5
TIFR ECE 2014 | Question: 5
The matrix \[ A=\left(\begin{array}{ccc} 1 & a_{1} & a_{1}^{2} \\ 1 & a_{2} & a_{2}^{2} \\ 1 & a_{3} & a_{3}^{2} \end{array}\right) \] is invertible when $a_{1}>a_{2}>a_{3}$ $a_{1}<a_{2}<a_{3}$ $a_{1}=3, a_{2}=2, a_{3}=4$ All of the above None of the above
admin
asked
in
Linear Algebra
Dec 14, 2022
by
admin
41.3k
points
8
views
tifr2014
linear-algebra
matrices
1
vote
0
answers
6
TIFR ECE 2014 | Question: 6
Let $g:[0, \pi] \rightarrow \mathbb{R}$ be continuous and satisfy \[ \int_{0}^{\pi} g(x) \sin (n x) d x=0 \] for all integers $n \geq 2$. Then which of the following can you say about $g?$ $g$ must be identically zero. $g(\pi / 2)=1$. $g$ need not be identically zero. $g(\pi)=0$. None of the above.
admin
asked
in
Calculus
Dec 14, 2022
by
admin
41.3k
points
7
views
tifr2014
calculus
definite-integrals
1
vote
0
answers
7
TIFR ECE 2014 | Question: 7
Let $A$ be an $n \times n$ real matrix. It is known that there are two distinct $n$-dimensional real column vectors $v_{1}, v_{2}$ such that $A v_{1}=A v_{2}$. Which of the following can we conclude about $A?$ All eigenvalues of $A$ are non-negative. $A$ is not full rank. $A$ is not the zero matrix. $\operatorname{det}(A) \neq 0$. None of the above.
admin
asked
in
Linear Algebra
Dec 14, 2022
by
admin
41.3k
points
8
views
tifr2014
linear-algebra
eigen-values
1
vote
0
answers
8
TIFR ECE 2014 | Question: 8
Consider a square pulse $g(t)$ of height $1$ and width $1$ centred at $1 / 2$. Define $f_{n}(t)=\frac{1}{n}\left(g(t) *^{n} g(t)\right),$ where $*^{n}$ stands for $n$-fold convolution. Let $f(t)=\lim _{n \rightarrow \infty} f_{n}(t)$. Then, which ... $\infty$. $f(t)$ has width $\infty$ and height $1$ . $f(t)$ has width $0$ and height $\infty$. None of the above.
admin
asked
in
Calculus
Dec 14, 2022
by
admin
41.3k
points
5
views
tifr2014
calculus
limits
1
vote
0
answers
9
TIFR ECE 2014 | Question: 9
Consider the following input $x(t)$ and output $y(t)$ pairs for two different systems. $x(t)=\sin (t), y(t)=\cos (t),$ $x(t)=t+\sin (t), y(t)=2 t+\sin (t-1).$ Which of these systems could possibly be linear and time invariant? Choose the most appropriate answer ... i) nor (ii). neither, but a system with $x(t)=\sin (2 t), y(t)=\sin (t) \cos (t) \operatorname{could~be.~}$
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
6
views
tifr2014
1
vote
0
answers
10
TIFR ECE 2014 | Question: 10
Consider the two quadrature amplitude modulation $\text{(QAM)}$ constellations below. Suppose that the channel has additive white Gaussian noise channel and no intersymbol interference. The constellation points are picked equally likely. Let $P\text{(QAM)}$ denote the ... .
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
9
views
tifr2014
1
vote
0
answers
11
TIFR ECE 2014 | Question: 11
It is known that the signal $x(t)$, where $t$ denotes time, belongs to the following class: \[ \left\{A \sin \left(2 \pi f_{0} t+\theta\right): f_{0}=1 \mathrm{~Hz}, 0 \leq A \leq 1,0<\theta \leq \pi\right\} \] If you ... how many samples are required to determine the signal? $1$ sample. $2$ samples. $1$ sample per second. $2$ samples per second. None of the above.
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
10
views
tifr2014
1
vote
0
answers
12
TIFR ECE 2014 | Question: 12
Assume that $Y, Z$ are independent, zero-mean, continuous random variables with variances $\sigma_{Y}^{2}$ and $\sigma_{Z}^{2},$ respectively. Let $X=Y+Z$. The optimal value of $\alpha$ which minimizes $\mathbb{E}\left[(X-\alpha Y)^{2}\right]$ ... $1$ $\frac{\sigma_{Y}^{2}}{\sigma_{Z}^{2}}$ None of the above.
admin
asked
in
Probability and Statistics
Dec 14, 2022
by
admin
41.3k
points
11
views
tifr2014
probability-and-statistics
probability
random-variable
1
vote
0
answers
13
TIFR ECE 2014 | Question: 13
Let function $f: \mathbf{R} \rightarrow \mathbf{R}$ be convex, i.e., for $x, y \in \mathbf{R}, \alpha \in[0,1], f(\alpha x+(1-\alpha) y) \leq$ $\alpha f(x)+(1-\alpha) f(y)$. Then which of the following is $\text{TRUE?}$ $f(x) \leq f(y)$ whenever ... $f$ and $g$ are both convex, then $\min \{f, g\}$ is also convex. For a random variable $X, E(f(X)) \geq f(E(X))$.
admin
asked
in
Calculus
Dec 14, 2022
by
admin
41.3k
points
10
views
tifr2014
calculus
functions
1
vote
0
answers
14
TIFR ECE 2014 | Question: 14
Suppose that a random variable $X$ has a probability density function \[ \begin{aligned} f(x) & =c(x-4) \quad \text { for } 4 \leq x \leq 6 \\ & =0 \quad \text { for all other } x \end{aligned} \] for some constant $c$. What is the expected value of $X$ given that $X \geq 5?$ $5 \frac{5}{9}$ $5 \frac{1}{2}$ $5 \frac{3}{4}$ $5 \frac{1}{4}$ $5 \frac{5}{8}$
admin
asked
in
Probability and Statistics
Dec 14, 2022
by
admin
41.3k
points
6
views
tifr2014
probability-and-statistics
probability
probability-density-function
1
vote
0
answers
15
TIFR ECE 2014 | Question: 15
You are allotted a rectangular room of a fixed height. You have decided to paint the three walls and put wallpaper on the fourth one. Walls can be painted at a cost of Rs. $10$ per meter and the wall paper can be put at the rate of Rs $20$ per meter for that ... $200$ square meter room? $400 \times \sqrt{3} $ $400$ $400 \times \sqrt{2}$ $200 \times \sqrt{3}$ $500$
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
8
views
tifr2014
quantitative-aptitude
geometry
1
vote
0
answers
16
TIFR ECE 2014 | Question: 16
A fair dice (with faces numbered $1, \ldots, 6$ ) is independently rolled twice. Let $X$ denote the maximum of the two outcomes. The expected value of $X$ is $4 \frac{1}{2}$ $3 \frac{1}{2}$ $5$ $4 \frac{17}{36} $ $4 \frac{3}{4}$
admin
asked
in
Probability and Statistics
Dec 14, 2022
by
admin
41.3k
points
6
views
tifr2014
probability-and-statistics
probability
expectation
1
vote
0
answers
17
TIFR ECE 2014 | Question: 17
Let $X$ be a Gaussian random variable with mean $\mu_{1}$ and variance $\sigma_{1}^{2}$. Now, suppose that $\mu_{1}$ itself is a random variable, which is also Gaussian distributed with mean $\mu_{2}$ and variance $\sigma_{2}^{2}$. Then the distribution ... variable with mean $\mu_{2}$ and variance $\sigma_{1}^{2}+\sigma_{2}^{2}$. Has no known form. None of the above.
admin
asked
in
Probability and Statistics
Dec 14, 2022
by
admin
41.3k
points
8
views
tifr2014
probability-and-statistics
probability
normal-distribution
1
vote
0
answers
18
TIFR ECE 2014 | Question: 18
A non-negative loss in a car accident is distributed with the following probability density function \[ f(x)=\frac{1}{10} \exp (-x / 10) \] for $x \geq 0$. Suppose that first $5$ units of loss is incurred by the insured and the remaining loss if any is covered by the ... $5+10 \exp \left(-\frac{1}{2}\right)$ $15 \exp \left(-\frac{1}{2}\right)$
admin
asked
in
Probability and Statistics
Dec 14, 2022
by
admin
41.3k
points
12
views
tifr2014
probability-and-statistics
probability
probability-density-function
1
vote
0
answers
19
TIFR ECE 2014 | Question: 19
Consider a $2^{k} \times N$ binary matrix $A=\left\{a_{\ell, k}\right\}, a_{\ell, k} \in\{0,1\}$. For rows $i$ and $j$, let the Hamming distance be $d_{i, j}=\sum_{\ell=1}^{N}\left|a_{i, \ell}-a_{j, \ell}\right|$. Let $D_{\min }=\min _{i, j} d_{i, j}$. ... $D_{\min } \leq N-k+1$. $D_{\min } \leq N-k$. $D_{\min } \leq N-k-1$. $D_{\min } \leq N-k-2$. None of the above.
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
10
views
tifr2014
1
vote
0
answers
20
TIFR ECE 2014 | Question: 20
What is \[ \lim _{n \rightarrow \infty} \cos \frac{\pi}{2^{2}} \cos \frac{\pi}{2^{3}} \cdots \cos \frac{\pi}{2^{n}} ? \] $0$ $\pi / 2$ $1 / \sqrt{2}$ $2 / \pi$ None of the above.
admin
asked
in
Calculus
Dec 14, 2022
by
admin
41.3k
points
13
views
tifr2014
calculus
limits
To see more, click for the
full list of questions
or
popular tags
.
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.