GO Electronics
Login
Register
@
Dark Mode
Profile
Edit my Profile
Messages
My favorites
Register
Activity
Questions
Unanswered
Tags
Subjects
Users
Ask
New Blog
Blogs
Exams
Dark Mode
Filter
No answer
No selected answer
No upvoted answer
Previous GATE
Featured
Questions without an upvoted answer in Others
1
vote
0
answers
1
TIFR ECE 2015 | Question: 1
For a time-invariant system, the impulse response completely describes the system if the system is causal and non-linear non-causal and non-linear causal and linear All of the above None of the above
admin
asked
in
Others
Dec 15, 2022
by
admin
41.3k
points
15
views
tifr2015
1
vote
0
answers
2
TIFR ECE 2015 | Question: 3
Let $h(t)$ be the impulse response of an ideal low-pass filter with cut-off frequency $5 \mathrm{kHz} .\; \mathrm{Let}\; g[n]= h(n T)$, for integer $n$, be a sampled version of $h(t)$ ... -time filter with $g[n]$ as its unit impulse response is a low-pass filter high-pass filter band-pass filter band-stop filter all-pass filter
admin
asked
in
Others
Dec 15, 2022
by
admin
41.3k
points
7
views
tifr2015
1
vote
0
answers
3
TIFR ECE 2015 | Question: 4
The capacity of a certain additive white Gaussian noise channel of bandwidth $1 \mathrm{~MHz}$ is $\mathrm{known}$ to be $8 \text{ Mbps}$ when the average transmit power constraint is $50 \mathrm{~mW}$. Which of the following statements can we make about the capacity $C$ ... $C=8$ $8 < C < 16$ $C=16$ $C>16$ There is not enough information to determine $C$
admin
asked
in
Others
Dec 15, 2022
by
admin
41.3k
points
9
views
tifr2015
1
vote
0
answers
4
TIFR ECE 2015 | Question: 5
What is the following passive circuit? Low-pass filter High-pass filter Band-pass filter Band-stop filter All-pass filter
admin
asked
in
Others
Dec 15, 2022
by
admin
41.3k
points
10
views
tifr2015
1
vote
0
answers
5
TIFR ECE 2015 | Question: 12
Consider the following optimization problem \[ \max (2 x+3 y) \] subject to the following three constraints \[ \begin{aligned} x+y & \leq 5, \\ x+2 y & \leq 10, \text { and } \\ x & <3 . \end{aligned} \] Let $z^{*}$ be the ... $(x, y)$ that satisfy the above three constraints such that $2 x+3 y$ equals $z^{*}$.
admin
asked
in
Others
Dec 15, 2022
by
admin
41.3k
points
7
views
tifr2015
1
vote
0
answers
6
TIFR ECE 2014 | Question: 4
A system accepts a sequence of real numbers $x[n]$ as input and outputs \[ y[n]=\left\{\begin{array}{ll} 0.5 x[n]-0.25 x[n-1], & n \text { even } \\ 0.75 x[n], & n \text { odd } \end{array}\right. \] The system is non-linear. non-causal. time-invariant. All of the above. None of the above.
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
9
views
tifr2014
1
vote
0
answers
7
TIFR ECE 2014 | Question: 9
Consider the following input $x(t)$ and output $y(t)$ pairs for two different systems. $x(t)=\sin (t), y(t)=\cos (t),$ $x(t)=t+\sin (t), y(t)=2 t+\sin (t-1).$ Which of these systems could possibly be linear and time invariant? Choose the most appropriate answer ... i) nor (ii). neither, but a system with $x(t)=\sin (2 t), y(t)=\sin (t) \cos (t) \operatorname{could~be.~}$
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
6
views
tifr2014
1
vote
0
answers
8
TIFR ECE 2014 | Question: 10
Consider the two quadrature amplitude modulation $\text{(QAM)}$ constellations below. Suppose that the channel has additive white Gaussian noise channel and no intersymbol interference. The constellation points are picked equally likely. Let $P\text{(QAM)}$ denote the ... .
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
8
views
tifr2014
1
vote
0
answers
9
TIFR ECE 2014 | Question: 11
It is known that the signal $x(t)$, where $t$ denotes time, belongs to the following class: \[ \left\{A \sin \left(2 \pi f_{0} t+\theta\right): f_{0}=1 \mathrm{~Hz}, 0 \leq A \leq 1,0<\theta \leq \pi\right\} \] If you ... how many samples are required to determine the signal? $1$ sample. $2$ samples. $1$ sample per second. $2$ samples per second. None of the above.
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
10
views
tifr2014
1
vote
0
answers
10
TIFR ECE 2014 | Question: 15
You are allotted a rectangular room of a fixed height. You have decided to paint the three walls and put wallpaper on the fourth one. Walls can be painted at a cost of Rs. $10$ per meter and the wall paper can be put at the rate of Rs $20$ per meter for that ... $200$ square meter room? $400 \times \sqrt{3} $ $400$ $400 \times \sqrt{2}$ $200 \times \sqrt{3}$ $500$
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
7
views
tifr2014
quantitative-aptitude
geometry
1
vote
0
answers
11
TIFR ECE 2014 | Question: 19
Consider a $2^{k} \times N$ binary matrix $A=\left\{a_{\ell, k}\right\}, a_{\ell, k} \in\{0,1\}$. For rows $i$ and $j$, let the Hamming distance be $d_{i, j}=\sum_{\ell=1}^{N}\left|a_{i, \ell}-a_{j, \ell}\right|$. Let $D_{\min }=\min _{i, j} d_{i, j}$. ... $D_{\min } \leq N-k+1$. $D_{\min } \leq N-k$. $D_{\min } \leq N-k-1$. $D_{\min } \leq N-k-2$. None of the above.
admin
asked
in
Others
Dec 14, 2022
by
admin
41.3k
points
9
views
tifr2014
1
vote
0
answers
12
TIFR ECE 2013 | Question: 1
The unit step response of a discrete-time, linear, time-invariant system is \[ y[n]=\left\{\begin{array}{rl} 0, & n<0 \\ 1, & n \geq 0 \text { and } n \text { even } \\ -1, & n \geq 0 \text { and } ... the system is bounded-input, bounded-output $\text{(BIBO)}$ stable there is not enough information to determine $\text{(BIBO)}$ stability none of the above
admin
asked
in
Others
Dec 12, 2022
by
admin
41.3k
points
11
views
tifr2013
1
vote
0
answers
13
TIFR ECE 2013 | Question: 2
The output $\{y(n)\}$ of a discrete time system with input $\{x(n)\}$ is given by \[ y(n)=\sum_{k=0}^{N-1} a^{k} x(n-k) . \] The difference equation for the inverse system is given by $y(n)=x(n)-a x(n-1)$ ... $(a)$ above, otherwise the inverse does not exist If $|a|<1$, then the answer is $(b)$ above, otherwise the inverse does not exist None of the above
admin
asked
in
Others
Dec 12, 2022
by
admin
41.3k
points
10
views
tifr2013
1
vote
0
answers
14
TIFR ECE 2013 | Question: 3
$X$ and $Y$ are jointly Gaussian random variables with zero mean. A constant-pdf contour is where the joint density function takes on the same value. If the constant-pdf contours of $X, Y$ are as shown above, which of the following could their covariance matrix $\mathbf{K}$ ... $\mathbf{K}=\left[\begin{array}{cc}1 & -0.5 \\ -0.5 & 2\end{array}\right]$
admin
asked
in
Others
Dec 12, 2022
by
admin
41.3k
points
8
views
tifr2013
1
vote
0
answers
15
TIFR ECE 2013 | Question: 5
Let $x(n)=\sin (2 \pi k n / N), n=0,1, \ldots, N-1$, where $2 k \neq N$ and $0<k \leq N-1$. Then the circular convolution of $\{x(n)\}$ with itself is $N \cos (4 \pi k n / N)$ $N \sin (4 \pi k n / N)$ $-N \cos (2 \pi k n / N) / 2$ $-N \sin (2 \pi k n / N) / 2$ None of the above
admin
asked
in
Others
Dec 12, 2022
by
admin
41.3k
points
8
views
tifr2013
1
vote
0
answers
16
TIFR ECE 2013 | Question: 6
The two-dimensional Fourier transform of a function $f(t, s)$ is given by \[ F(\omega, \theta)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t, s) \exp (-j \omega t) \exp (-j \theta s) d t d s . \] Let $\delta(t)$ be the delta function and let $u(t)=0$ ... $\exp (-(t+s)) u(t+s)$ $\exp (-t) u(t) \delta(s)$ $\exp (-t) \delta(t+s)$ None of the above
admin
asked
in
Others
Dec 12, 2022
by
admin
41.3k
points
4
views
tifr2013
1
vote
0
answers
17
TIFR ECE 2013 | Question: 7
The $Z$-transform of $\{x(n)\}$ is defined as $X(z)=\sum_{n} x(n) z^{-n}$ (for those $z$ for which the series converges). Let $u(n)=1$ for $n \geq 0$ and $u(n)=0$ for $n<0$. The inverse $Z$-transform of $X(z)=$ ... is (a), otherwise the inverse is not well-defined If $|a|<1$, then the answer is (b), otherwise the inverse is not well-defined None of the above
admin
asked
in
Others
Dec 12, 2022
by
admin
41.3k
points
5
views
tifr2013
1
vote
0
answers
18
TIFR ECE 2013 | Question: 8
The following circuit with an ideal operational amplifier is A low pass filter A high pass filter A bandpass filter A bandstop filter An all pass amplifier
admin
asked
in
Others
Dec 12, 2022
by
admin
41.3k
points
6
views
tifr2013
1
vote
0
answers
19
TIFR ECE 2013 | Question: 15
Consider a sequence of non-negative numbers $\left\{x_{n}: n=1,2, \ldots\right\}$. Which of the following statements cannot be true? $\sum_{n=1}^{\infty} x_{n}=\infty$ but $x_{n}$ decreases to zero as $n$ increases. $\sum_{n=1}^{\infty} x_{n}<\infty$ ... and each $x_{n} \leq 1 / n^{2}$. $\sum_{n=1}^{\infty} x_{n}<\infty$ and each $x_{n}>x_{n+1}$.
admin
asked
in
Others
Dec 12, 2022
by
admin
41.3k
points
6
views
tifr2013
1
vote
0
answers
20
TIFR ECE 2012 | Question: 3
A sequence of numbers $\left(x_{n}: n=1,2,3, \ldots\right)$ is said to have a limit $x$, if given any number $\epsilon>0$, there exists an integer $n_{\epsilon}$ ... $6$ and has a limit that equals $6$ . None of the above statements are true.
admin
asked
in
Others
Dec 8, 2022
by
admin
41.3k
points
13
views
tifr2012
1
vote
0
answers
21
TIFR ECE 2012 | Question: 4
The signal $x_{n}=0$ for $n<0$ and $x_{n}=a^{n} / n$ ! for $n \geq 0$. Its $z$-transform $X(z)=\sum_{n=-\infty}^{\infty} x_{n} z^{-n}$ is $1 /\left(z^{-1}-a\right)$, region of convergence $\text{(ROC)}$: $|z| \leq 1 / a$ ... $|z|>a$ Item $(a)$ if $a>1$, Item $(b)$ if $a<1$ $\exp \left(a z^{-1}\right)$, $\text{ROC}$: entire complex plane.
admin
asked
in
Others
Dec 8, 2022
by
admin
41.3k
points
10
views
tifr2012
1
vote
0
answers
22
TIFR ECE 2012 | Question: 5
Consider a periodic square wave $f(t)$ with a period of $1$ second such that $f(t)=1$ for $t \in[0,1 / 2)$ and $f(t)=-1$ for $t \in[1 / 2,1)$. It is passed through an ideal low-pass filter with cutoff at $2 \mathrm{~Hz}$. Then the output is $\sin (2 \pi t)$ ... $\sin (2 \pi t)-\cos (2 \pi t)$ None of the above
admin
asked
in
Others
Dec 8, 2022
by
admin
41.3k
points
9
views
tifr2012
1
vote
0
answers
23
TIFR ECE 2012 | Question: 6
Let $u(t)$ be the unit step function that takes value $1$ for $t \geq 0$ and is zero otherwise. Let $f(t)=e^{-t} u(t)$ and $g(t)=u(t) u(1-t)$. Then the convolution of $f(t)$ and $g(t)$ is $(e-1) e^{-t} u(t)$ $1-e^{-t}$ for $0 \leq t \leq 1,(e-1) e^{-t}$ for $t \geq 1$ and zero otherwise $t e^{-t} u(t)$ The convolution integral is not well defined None of the above
admin
asked
in
Others
Dec 8, 2022
by
admin
41.3k
points
7
views
tifr2012
1
vote
0
answers
24
TIFR ECE 2012 | Question: 7
A linear time-invariant system has a transfer function $H(s)=1 /(1+s)$. If the input to the system is $\cos (t)$, the output is $\left(e^{j t}+e^{-j t}\right) / 2$ where $j=\sqrt{-1}$ $\cos (t) / 2$ $(\cos (t)+\sin (t)) / 2 \sqrt{ }$ $\sin (t) / 2$. The system is unstable and the output is not well-defined.
admin
asked
in
Others
Dec 8, 2022
by
admin
41.3k
points
8
views
tifr2012
1
vote
0
answers
25
TIFR ECE 2012 | Question: 8
The input to a series $\text{RLC}$ circuit is a sinusoidal voltage source and the output is the current in the circuit. Which of the following is true about the magnitude frequency response of this system? Dependending on the values of $\text{R, L}$ ... $1 /(2 \pi \sqrt{\text{LC}})$.
admin
asked
in
Others
Dec 8, 2022
by
admin
41.3k
points
11
views
tifr2012
1
vote
0
answers
26
TIFR ECE 2012 | Question: 9
$x(t)$ is a signal of bandwidth $4 \mathrm{~kHz}$. It was sampled at a rate of $16 \mathrm{~kHz}$. \[ x_{n}=x(n T), \quad n \text { integer, } \quad T=\frac{1}{16} \mathrm{~ms} . \] Due to a data handling error alternate samples were erased ... $y(t)$ over a low pass filter of bandwidth $4\text{ KHz}$ any of the above none of the above
admin
asked
in
Others
Dec 8, 2022
by
admin
41.3k
points
9
views
tifr2012
1
vote
0
answers
27
TIFR ECE 2011 | Question: 1
Output of a linear system with input $x(t)$ is given by \[y(t)=\int_{-\infty}^{\infty} h(t, \tau) x(\tau)+1.\] The system is linear if $h(t, \tau)=h(t-\tau)$ $h(t, \tau)=h(\tau)$ $h(t, \tau)=h(t)$ $h(t, \tau)=$ constant None of the above.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
9
views
tifr2011
1
vote
0
answers
28
TIFR ECE 2011 | Question: 2
The minimum number of unit delay elements required for realizing an infinite impulse response $\text{(IIR)}$ filter is/are $0$ $1$ $\infty$. $>1$. None of the above.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
9
views
tifr2011
1
vote
0
answers
29
TIFR ECE 2011 | Question: 3
The Fourier transform of \[x(t)=\frac{t^{n-1}}{(n-1) !} \mathrm{e}^{-a t} u(t), \quad a>0\] $(\jmath=\sqrt{-1}, u(t)=1$ for $t \geq 0, u(t)=0, t<0)$ is $(a+\jmath \omega)^{n}$ $\sum_{k=1}^{n} \frac{(a+\jmath \omega)^{k}}{k !}$ $na\jmath \omega$ $\frac{1}{(a+\jmath \omega)^{n}}$ None of the above.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
8
views
tifr2011
1
vote
0
answers
30
TIFR ECE 2011 | Question: 5
Consider a system with input $x(t)$ and the output $y(t)$ is given by \[y(t)=x(t)-0.5 x(t-1)-0.5 x(t-2)+1 .\] The system is Linear Non-causal Time varying All of the above None of the above
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
8
views
tifr2011
1
vote
0
answers
31
TIFR ECE 2011 | Question: 6
Let $\mathrm{H}(\mathrm{z})$ be the $z$-transform of the transfer function corresponding to an input output relation $y(n)-\frac{1}{2} y(n-1)=x(n)+\frac{1}{3} x(n-1)$. Then which of the following is TRUE The $\operatorname{ROC}$ ... $|z|<\frac{1}{2}$. $\operatorname{Both}$ (a) and (b). System is necessarily causal. None of the above.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
7
views
tifr2011
1
vote
0
answers
32
TIFR ECE 2011 | Question: 7
Assume you are using a binary code error correcting code $C$. If the minimum Hamming distance between any two codewords of $C$ is $3$. Then We can correct and detect $2$ bit errors. We can correct $1$ bit errors and detect $2$ bit errors. We can correct $2$ bit errors and detect $1$ bit errors. We can correct $1$ bit errors and detect $1$ bit errors. None of the above.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
6
views
tifr2011
1
vote
0
answers
33
TIFR ECE 2011 | Question: 12
Consider two communication systems $C_{1}$ and $C_{2}$ that use pulse amplitude modulation $\text{(PAM)}$, $P A M_{1}$ and $P A M_{2}$. Let the distance between any two points of $P A M_{1}$ be $d$, and $P A M_{2}$ be $2 d$, respectively. Assume that $C_{1}$ ... $P_{1}=P_{2}$. $P_{1} < P_{2}$ $P_{1}>P_{2}$. $P_{1}=P_{2}+\frac{1}{2}$ None of the above.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
11
views
tifr2011
1
vote
0
answers
34
TIFR ECE 2011 | Question: 14
In household electrical wiring which configuration is used to connect different electrical equipments. Series. Parallel Combination of series and parallel. Any of the above. None of the above.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
11
views
tifr2011
1
vote
0
answers
35
TIFR ECE 2011 | Question: 15
Consider a channel where $x_{n} \in\{0,1\}$ is the input and $y_{n}=x_{n} * z_{n}$ is the output, where $*$ is $\text{EX-OR}$ operation, and $P\left(z_{n}=x_{n-1}\right)=P\left(z_{n}=y_{n-1}\right)=\frac{1}{2}$ ... $\frac{1}{2}.$ $1$. $<1.$ $\geq 0.$ Both $(c)$ and $(d)$.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
10
views
tifr2011
1
vote
0
answers
36
TIFR ECE 2011 | Question: 16
Consider a triangular shaped pulse $x$ of base $2 T$ and unit height centered at $0$ , i.e. $x(t)=0$ for $|t|>T, x(t)=1-|t|$ for $t \in[-T, T]$. Then if $x$ is convolved with itself, the output is Square shape. Triangular shape. Bell shape. Inverted $\text{U}$ shape. None of the above.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
10
views
tifr2011
1
vote
0
answers
37
TIFR ECE 2011 | Question: 17
Let $x[n]$ and $y[n]$ be the input and output of a linear time invariant $\text{(LTI)}$ system. Then which of following system is $\text{LTI}$. $z[n]=y[n]+c$ for a constant $c$. $z[n]=x[n] y[n]$. $z[n]=y[n]+x[n]+c$ for a constant $c$. $z[n]=y[n]+x[n]$. None of the above.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
12
views
tifr2011
1
vote
0
answers
38
TIFR ECE 2011 | Question: 18
Which of the following statements is TRUE. The cascade of a non-causal linear time invariant $\text{(LTI)}$ system with a causal $\text{LTI}$ system can be causal. If $h[n] \leq 2$ for all $n$, then the $\text{LTI}$ system with $h[n]$ as its impulse response is stable and ... $u[n]=1, n \geq 0, u[n]=0, n<0$, the $\text{LTI}$ system is stable. Both $(c)$ and $(d)$.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
7
views
tifr2011
1
vote
0
answers
39
TIFR ECE 2011 | Question: 19
Let $R_{X}(\tau)$ be the autocorrelation function of a zero mean stationary random process $X(t)$. Which of following statements is FALSE. If $R_{X}(\tau)=0, \forall \tau, X(n)$ and $X(m), n \neq m$ are independent. $R_{X}(\tau)=R_{X}(-\tau)$. $R_{X}(0)=E\left[X^{2}\right]$, where $E$ denotes the expectation. $R_{X}(0) \geq R_{X}(\tau), \forall \tau.$ None of the above.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
9
views
tifr2011
1
vote
0
answers
40
TIFR ECE 2011 | Question: 20
Let $x(t)$ be a signal whose Fourier transform $X(f)$ is zero for $|f|>W$. Using a sampler with sampling frequency $4 W$, which of the following filters can be used to exactly reconstruct $x(t)$ ... $\text{[-3W} \;5 \mathrm{W}]$. All the above. None of the above.
admin
asked
in
Others
Dec 5, 2022
by
admin
41.3k
points
8
views
tifr2011
To see more, click for the
full list of questions
or
popular tags
.
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.