in Others edited by
6 views
0 votes
0 votes

TIFR ECE 2023 | Question-14

Suppose that $Z \sim \mathcal{N}(0,1)$ is a Gaussian random variable with mean zero and variance $1$. Let $F(z) \equiv \mathbb{P}(Z \leq z)$ be the cumulative distribution function $\operatorname{(CDF)}$ of $Z$. Define a new random variable $Y$ as $Y=F(Z)$. This means that the random variable $Y$ is obtained by evaluating the $\operatorname{CDF} F(\cdot)$ at randomly chosen points. Then the value of $\mathbb{E}[Y]$ is:

  1. $F(1)$
  2. $1$
  3. $\frac{1}{2}$
  4. $\frac{1}{\sqrt{2 \pi}}$
  5. $\frac{\pi}{4}$

     

in Others edited by
by
43.6k points
6 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.