Electronis Discussion
0 votes

For a function $g(t),$ it is given that $\int_{- \infty}^{ + \infty} g(t)e^{-j\omega t}\:dt = \omega e^{-2\omega^{2}}$ for any real value $\omega.$ If $y(t) = \int_{- \infty}^{t}\:g(\tau)\:d\tau,$ then $\int_{- \infty}^{ + \infty}y(t)dt$ is

  1. $0$
  2. $-j$
  3. $-\frac{j}{2}$
  4. $\frac{j}{2}$
in Others by (15.7k points)
edited by

Please log in or register to answer this question.

Answer:
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,109 questions
44 answers
8 comments
42,883 users