Electronis Discussion
0 votes
43 views

 

Consider two $16$-point sequences $x\left [ n \right ]$ and $h\left [ n \right ]$. Let the linear convolution of  $x\left [ n \right ]$ and $h\left [ n \right ]$ be denoted by $y\left [ n \right ]$, while $z\left [ n \right ]$ denotes the $16$-point inverse discrete Fourier transform $\text{(IDFT)}$ of the product of the $16$-point $\text{DFTs}$ of $x\left [ n \right ]$ and $h\left [ n \right ]$. The value(s) of $k$ for which $z\left [ k \right ]=y\left [ k \right ]$ is/are

  1. $k=0,1,2,,15$
  2. $k=0$
  3. $k=15$
  4. $\text{k=0 and k=15}$
in Others by (4.5k points)
edited by | 43 views

Please log in or register to answer this question.

Answer:
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,174 questions
79 answers
11 comments
44,078 users