The Discrete Fourier Transform (DFT) of the $4$-point sequence

$x\left [ n \right ]=\left \{ x\left [ 0 \right ],x\left [ 1 \right ], x\left [ 2 \right ], x\left [ 3 \right ] \right \}= \left \{ 3,2,3,4 \right \}$ is $X\left [ k \right ]=\left \{ X\left [ 0 \right ],X\left [ 1 \right ], X\left [ 2 \right ], X\left [ 3 \right ] \right \}= \left \{ 12,2j,0,-2j \right \}.$

If $X_{1}\left [ k \right ]$ is the DFT of the $12$-point sequence $x_{1}\left [ n \right ]$$= \left \{ 3,0,0,2,0,0,3,0,0,4,0,0 \right \},$ the value of $\left | \frac{X_{1}\left [ 8 \right ]}{X_{1}\left [ 11 \right ]} \right |$ is _________