Most viewed questions in Networks, Signals and Systems

0 votes
0 answers
42
Let the state-space representation of an LTI system be $x(t)=A x(t)+B u(t), y(t)=Cx(t)+du(t)$ where $A,B,C$ are matrices, $d$ is a scalar, $u(t)$ is the input to the syst...
0 votes
0 answers
44
0 votes
0 answers
45
The state diagram of a system is shown below. A system is described by the state-variable equations$$\dot{X}= AX+Bu;\:\: y = CX+Du$$The state-variable equations of the sy...
0 votes
0 answers
48
A unity negative feedback system has an open-loop transfer function $G(S) = \dfrac{K}{s(s+10)}$. The gain $K$ for the system to have a damping ratio of $0.25$ is ________...
0 votes
0 answers
49
The figure shows an RLC circuit excited by the sinusoidal voltage $100 \cos(3t)$ Volts, where $t$ is in seconds. The ratio $\frac{\text{amplitude of }V_{2}}{\text{amplitu...
0 votes
0 answers
52
0 votes
0 answers
53
An LTI system with unit sample response $h[n]=5\delta [n]-7\delta [n-1]+7\delta [n-3]-5\delta [n-4]$ is a low-pass filter high-pass filter band-pass filter band-s...
0 votes
0 answers
54
0 votes
0 answers
55
0 votes
0 answers
56
Let $h[n]$ be the impulse response of a discrete-time linear time invariant(LTI) filter. The impulse response is given by $$h[0]=\frac{1}{3}; \, h =\frac{1}{3}; \, h =\fr...
0 votes
0 answers
61
Consider the signal $f(t)=1+2 \cos(\pi t)+3 \sin \left(\dfrac{2\pi}{3}t\right)+4 \cos \left(\dfrac{\pi}{2}t+\dfrac{\pi}{4}\right)$, where $t$ is in seconds. Its fundament...
0 votes
0 answers
63
1 votes
0 answers
69
For the given circuit, which one of the following is correct state equation? $\dfrac{\mathrm{d} }{\mathrm{d} t}\begin{bmatrix} v\\ i \end{b...
0 votes
0 answers
72
0 votes
0 answers
73
In the circuit shown, at resonance, the amplitude of the sinusoidal voltage (in Volts) across the capacitor is ____________.
0 votes
0 answers
75
0 votes
0 answers
76
0 votes
0 answers
79