in Continuous-time Signals recategorized by
116 views
0 votes
0 votes

Let the state-space representation of an LTI system be $x(t)=A x(t)+B u(t), y(t)=Cx(t)+du(t)$ where $A,B,C$ are matrices, $d$ is a scalar, $u(t)$ is the input to the system, and $y(t)$ is its output. Let $B=[0\quad0\quad1]^{T}$ and $d=0$ .Which one of the following options for $A$ and $C$ will ensure that the transfer function of this LTI system is

$$H(s)=\dfrac{1}{s^{3}+3s^{2}+2s+1}?$$

  1. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-1&-2&-3 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 1&0&0 \end{bmatrix}$
  2. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-3&-2&-1 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 1&0&0 \end{bmatrix}$
  3. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-1&-2&-3 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 0&0&1 \end{bmatrix}$
  4. $A=\begin{bmatrix} 0&1&0\\ 0&0&1\\-3&-2&-1 \\\end{bmatrix} \text{and} \quad C=\begin{bmatrix} 0&0&1 \end{bmatrix}$
in Continuous-time Signals recategorized by
by
6.0k points
116 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.