in Others edited by
7 views
0 votes
0 votes

GATE ECE 1991 | Question-13

A linear time-invariant discrete-time system is described by the vector matrix difference equation $$ x(k+1)=F \underline{X}(k)+G \underline{u}(k) $$

Where $\underline{X}(k)$ is the state vector, $F$ is an $n \times n$ constant matrix, $G$ is a $(n \times r)$ constant matrix and $\underline{u}(k)$ is the control vector. The state transition matrix of the system is given by inverse $Z$-transform of

  1. $ZI - F$
  2. $(Z I-F) Z$
  3. $(Z I-F)^{-1} G$
  4. $(Z I-F)^{-1} Z$
in Others edited by
by
32.7k points
7 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.