2 views

0 votes

**Statement for Linked Answer Questions 54 and 55:**

Consider a baseband binary PAM receiver shown below. The additive channel noise $n(t)$ is white with power spectral density $S_{N}(f)=N_{0} / 2=10^{-20}$ W/Hz. The low-pass filter is ideal with unity gain and cutoff frequency $1 \; \mathrm{MHz}$. Let $Y_{t}$ represent the random variable $y\left(f_{t}\right)$.

\[ \begin{array}{ll}

Y_{t}=N_{k} & \text { if transmitted bit } b_{k}=0 \\

Y_{t}=a+N_{k} & \text { if transmitted bit } b_{k}=1

\end{array}\]

where $N_{k}$ represents the noise sample value. The noise sample has a probability density function. $P_{N_{1}}(n)=0.5 \alpha c^{\cdot \epsilon \text { d.d }}$ (This has mean zero and variance $2 / \alpha^{2}$ ). Assume transmitted bits to be equiprobable and threshold $z$ is set lo a/2 $=10^{-6} \mathrm{~V}$.

The value of the parameter $\alpha$ (in $V^{-1}$ ) is

- $10^{10}$
- $10^{}$
- $1.414 \times 10^{-10}$
- $2 \times 10^{20}$