Electronis Discussion
0 votes
33 views

Match the inferences $X$, $Y$ and $Z$, about a system,to the corresponding properties of the elements of first column in Rouths' Table of the system characteristic equation.

$\begin{array}{ll}\text{X: The system is stable ... }&\text{P: ... when all elements are positive}\\\text{Y: The system is unstable ... }&\text{Q: ... when any one element is zero}\\\text{Z: The test breaks down ….}&\text{R: ... when there is a change in sign of coefficients} \end{array}$ 

  1. $X \to P, \: Y \to Q, \: Z \to R$
  2. $X \to Q, \: Y \to P, \: Z \to R$
  3. $X \to R, \: Y \to Q, \: Z \to P$
  4. $X \to P, \: Y \to R, \: Z \to Q$
in Control Systems by (15.8k points)
edited by | 33 views

Please log in or register to answer this question.

Answer:
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,174 questions
78 answers
11 comments
43,907 users