recategorized by
149 views
2 votes
2 votes

The system of equations $$ \begin{aligned} &x+y+z=6 \\ &x+4 y+6 z=20 \\ &x+4 y+\lambda z=\mu \end{aligned} $$ has NO solution for values of $\lambda$ and $\mu$ given by

  1. $\lambda=6, \mu=20$
  2. $\lambda=6, \mu \neq 20$
  3. $\lambda \neq 6, \mu=20$
  4. $\lambda \neq 6, \mu \neq 20$
recategorized by

1 Answer

0 votes
0 votes

For no solution $\rho$(A) $\lt$ $\rho$(A¦B) where A¦B is the augmented matrix, A is the coefficient matrix and B is the constant matrix.

then, A = $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 4 & 6 \\ 1 & 4 & \lambda \end{bmatrix}$ and B = $\begin{bmatrix} 6 \\ 20 \\ \mu \end{bmatrix}$

and, A¦B = $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & 4 & 6 & 20 \\ 1 & 4 & \lambda & \mu \end{bmatrix}$

Applying row transformation for converting the matrix into Row Echelon form to get the rank of the matrix:

R2 → R2 $-$ R1

R3 → R3 $-$ R1

A¦B = $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 3 & 5 & 14 \\ 0 & 3 & \lambda - 1 & \mu - 6 \end{bmatrix}$

R3 → R3 $-$ R2

A¦B = $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 3 & 5 & 14 \\ 0 & 0 & \lambda - 6 & \mu - 20 \end{bmatrix}$

Finally, $\rho$(A) $\lt$ $\rho$(A¦B) when $\lambda$ = 6 ($\rho$(A) = 2) and $\mu$ $\neq$ 20 ($\rho$(A¦B) = 3).

ago