
Let $\mathrm{B}$ denote the unit ball in $\mathbb{R}^{2}$, and $\mathrm{Q}$ a square of side length $2$. Let $\mathrm{K}$ be the set of all vectors $z$ such that for some $x \in \mathrm{B}$ and some $y \in \mathrm{Q}, z=x+y$. The area of $\mathrm{K}$ is
- $4+\pi$
- $6+\pi$
- $8+\pi$
- $10+\pi$
- $12+\pi$