in Electronic Devices recategorized by
44 views
0 votes
0 votes

A silicon bar is doped with donor impurities $N_{D}= 2.25 \times 10^{15} \text{atoms} / cm^{3}$. Given the intrinsic carrier concentration of silicon at $T = 300 \: K$ is $n_{i}= 1.5 \times 10^{10} cm^{-3}.$ Assuming complete impurity ionization, the equilibrium electron and hole concentrations are

  1. $n_{0}=1.5\times 10^{16}cm^{-3}, \: p_{0}= 1.5\times 10^{5}cm^{-3}$
  2. $n_{0}=1.5\times 10^{10}cm^{-3}, \: p_{0}= 1.5\times 10^{15}cm^{-3}$
  3. $n_{0}=2.25\times 10^{15}cm^{-3}, \: p_{0}= 1.5\times 10^{10}cm^{-3}$
  4. $n_{0}=2.25\times 10^{15}cm^{-3}, \: p_{0}= 1\times 10^{5}cm^{-3}$
in Electronic Devices recategorized by
15.8k points
44 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.