in Vector Analysis recategorized by
49 views
0 votes
0 votes

Consider the state space model of a system, as given below

$\begin{bmatrix} x_{1}\\x_{2} \\x_{3} \end{bmatrix} \begin{bmatrix} -1 &1 &0 \\ 0& -1 &0 \\ 0 & 0 & -2 \end{bmatrix}\begin{bmatrix} x_{1}\\x_{2} \\x_{3} \end{bmatrix} + \begin{bmatrix} 0\\4 \\0 \end{bmatrix} u;\:\: y = \begin{bmatrix}1 & 1&1 \end{bmatrix} \begin{bmatrix} x_{1}\\x_{2} \\x_{3} \end{bmatrix} $

The system is

  1. controllable and observable
  2. uncontrollable and observable
  3. uncontrollable and unobservable
  4. controllable and unobservable
in Vector Analysis recategorized by
15.8k points
49 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.