Electronis Discussion
0 votes
15 views

Consider a discrete-time channel $Y=X +Z$, where the additive noise $Z$ is signal-dependent. In particular, given the transmitted symbol $ X \in \{-a , +a\}$ at any instant, the noise sample $Z$ is chosen independently from a Gaussian distribution with mean $\beta X$ and unit variance. Assume a threshold detector with zero threshold at the receiver.

When $\beta=0$, the BER was found to be $Q(a) = 1 \times 10^{-8}. (Q(v) = \frac{1}{\sqrt{2 \pi}} \int_v^{\infty}e^{-u^2/2} du$, and for $v>1$, use $Q(v) \approx e^{-v^2/2})$

When $\beta = -0.3$, the BER is closest to

  1. $10^{-7}$
  2. $10^{-6}$
  3. $10^{-4}$
  4. $10^{-2}$
in Vector Analysis by (15.8k points)
edited by | 15 views

Please log in or register to answer this question.

Answer:
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.
1,174 questions
78 answers
11 comments
43,964 users