in Vector Analysis retagged by
103 views
0 votes

If the vectors $e_1=(1,0,2)$, $e_2=(0,1,0)$ and $e_3=(-2,0,1)$ form an orthogonal basis of the three-dimensional real space $\mathbb{R}^3$, then the vector $\textbf{u}=(4,3,-3)\in \mathbb{R}^3 $ can be expressed as

  1. $\textbf{u}=-$$\large\frac{2}{5}$$e_1-3e_2-$$\large\frac{11}{5}$$e_3\\$
  2. $\textbf{u}=-$$\large\frac{2}{5}$$e_1-3e_2+$$\large\frac{11}{5}$$e_3 \\$
  3. $\textbf{u}=-$$\large\frac{2}{5}$$e_1+3e_2+$$\large\frac{11}{5}$$e_3 \\$
  4. $\textbf{u}=-$$\large\frac{2}{5}$$e_1+3e_2-$$\large\frac{11}{5}$$e_3$
in Vector Analysis retagged by
by
15.8k points
103 views

1 Answer

0 votes
$u= e_1* x_1+e_2*x_2+e_3*x_3$

$(4,3,-3)=(1,0,2)* x_1+(0,1,0)*x_2+(-2,0,1)*x_3$

$x_1-2 x_3=4$

$x_2=3$

$2x_1+x_3=-3$

$x_1=\frac{-2}{5}$

$x_3=\frac{-11}{5}$

$u= -\frac{2}{5}e_1+3e_2-\frac{11}{5}e_3$

$Ans= D$
by
140 points
Answer:
Ask
Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.