in Others edited by
31 views
0 votes
0 votes
Consider the signals $x\left [ n \right ]=2^{n-1}u\left [ -n+2 \right ]$ and $y\left [ n \right ]=2^{-n+2}u\left [ n+1 \right ]$, where $u[n]$ is the unit step sequence. Let $X(e^{jw})$ and $Y(e^{jw})$ be the discrete-time Fourier transform of $x[n]$ and $y[n]$, respectively. The value of the integral

$$\frac{1}{2\pi } \int_{0}^{2\pi }X\left ( e^{j\omega } \right )Y\left ( e^{-j\omega } \right )d\omega$$

(rounded off to one decimal place) is ___________
in Others edited by
by
6.0k points
31 views

Please log in or register to answer this question.

Welcome to GO Electronics, where you can ask questions and receive answers from other members of the community.