2 views

0 votes

If a vector field $\vec{V}$ is related to another vector field $\vec{A}$ through $\vec{V}=\nabla \times \vec{A}$, which of the following is true ? Note: $C$ and $S_{C}$ refer to any closed contour and any surface whose boundary is $C$.

- $\oint_{C} \vec{V} \cdot \overrightarrow{d l}=\int \int_{S_{C}} \vec{A} \cdot \overrightarrow{d S}$
- $\oint_{C} \vec{A} \cdot \overrightarrow{d l}=\int \int_{S_{C}} \vec{V} \cdot \overrightarrow{d S}$
- $\oint_{C} \nabla \times \vec{V} \cdot \overrightarrow{d l}=\int \int_{S_{C}} \nabla \times \vec{A} \cdot \overrightarrow{d S}$
- $\oint_{C} \nabla \times \vec{A} \cdot \overrightarrow{d l}=\int \int_{S_{C}} \vec{V} \cdot \overrightarrow{d S}$