The driving point impedance of the following network

is given by $Z(s)=\frac{0.2 s}{s^{2}+0.1 s+2}$. The component values are
- $\begin{array}{lll} \mathrm{L}=5 \mathrm{~H}, & \mathrm{R}=0.5 \; \Omega, & \mathrm{C}=0.1 \mathrm{~F} \end{array}$
- $\begin{array}{lll} \mathrm{L}=0.1 \mathrm{~H}, & \mathrm{R}=0.5 \; \Omega, & \mathrm{C}=5 \mathrm{~F} \end{array}$
- $\begin{array}{lll} \mathrm{L}=5 \mathrm{~H}, & \mathrm{R}=2 \; \Omega, & \mathrm{C}=0.1 \mathrm{~F} \end{array}$
- $\begin{array}{lll} \text{L}=0.1 \mathrm{~H}, & \mathrm{R}=2 \; \Omega, & \mathrm{C}=5 \mathrm{~F} \end{array}$