edited by
120 views
0 votes
0 votes

The intrinsic carrier density at $300 \mathrm{~K}$ is $1.5 \times 10^{10}$ / $\mathrm{cm}^{3}$, in silicon. For $n$-type silicon doped to $2.25 \times$ $10^{15}$ atoms $/ \mathrm{cm}^{3}$, the equilibrium electron and hole densities are

  1. $n=1.5 \times 10^{15} / \mathrm{cm}^{3}, p=1.5 \times 10^{10} / \mathrm{cm}^{3}$
  2. $n=1.5 \times 10^{10} / \mathrm{cm}^{3}, p=2.25 \times 10^{15} / \mathrm{cm}^{3}$
  3. $n=2.25 \times 10^{15} / \mathrm{cm}^{3}, p=1.0 \times 10^{5} / \mathrm{cm}^{3}$
  4. $n=1.5 \times 10^{10} / \mathrm{cm}^{3}, p=1.5 \times 10^{10} / \mathrm{cm}^{3}$
edited by

Please log in or register to answer this question.

Answer: